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Abstract

A quantization procedure for the electromagnetic field in a rectangular cavity with perfect
conductor walls is presented, where a decomposition formula of the field plays an essential
role. All vector mode functions are obtained by using the decomposition. After expand-
ing the field in terms of the vector mode functions, we get the quantized electromagnetic
Hamiltonian.

1 Introduction

Recently we have carried out. the field quantization in several rectangular cavities using the vector
mode functions |1]. The vector mode functions have been obtained with the help of an orthogonal
matrix. However, the procedure developed there has not been applicable to other cavities in a
straightforward manner.

To overcome the above difficulty, we have presented another quantization scheme for the field
in a circular cylindrical cavity [2]. All vector mode functions have been obtained by using a
decomposition formula derived from Maxwell’s equations directly. This method is more general
than before, because it is also applicable to rectangular and spherical cavities.

In this paper, we applied the above method to a rectangular cavity with perfect conducting
walls. Then spontancous emission of an atom inside the cavity is calculated.

2 Decomposition of Electromagnetic Fields

In this section, we derive the decomposition formula for the field in the Cartesian coordinates. We
shall use this result in performing the field quantization in a rectangular cavity in Sec. 3.

Maxwell’s equations for the electric field E and the magnetic field B in free space are given by
V-E 0,V-B 0,and

VxEiaB o, VxB~§B,EAO, (1)

where ¢ is the velocity of light in free space and @, -~ 9/0t.
The electromagnetic field E and B can be written in the Cartesian coordinates (z,y, z) as
E Er1E,B Byt B, where Er e.F; { e,F, is the transverse component of the field
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and E,  e.F,. lere e,, e,, and e, are the unit vectors in the z, y, and z directions, respectively.
For simplicity, the derivative with respect to, for example, z is described as 3/0z = O..
Since V., x E; - 0, the first equation in (1) gives

dB, : —V'r X E'r, aBT : —v'r X Ez — Vz X ET. (2)

Similarly, the second equation in (1) leads to

éath = VT X BT, é&ET - VT X Bz + Vz X BT (3)
Equations (2) and (3) give

ArE- —VxVxE, +V xaB,, ATBV—$V><6¢E,—V><V><B,. )

o rewrite Eq. (4), we must decompose the components F, and B, into two parts. Suppose
that the field is in a finite region. Let us expand E, and B, in terms of a certain complete system
of functions with mode s:

E.(r,t) ) (Eu(r,t) +cc), Ba(r,t) =) (Bu(r,t) +cc), (5)

where F,(r,t) — E(r)e™™=t and B,,(r,t) — B, (r)e ™. Here Wy, (Wee = 0, 0 = 1,2) is
determined by using given boundary conditions. Since F, and B, satisfy the wave equation, the
components F,, and B,, satisfy the Helmholts equations:

AEza = _kflEus ABza = _k32BZO(r)’ (6)
where k2, - w2 /2. We assume that the components satisfy
azEza = _hilEza, dsza = _hzsza’ (7)

where hZ, is determined by the boundary conditions. Then we have two dimensional Helmholtz
equations:

ArE(r) - _gflEzs(r)a A7 Bas(r) = _932316(1')’ (8)
where g2, = k2, — h2,.
Here we define two functions F, from E,, and B,, with g2, # 0 as

Fo(r,t) = 3 [Fao(r,t) tec] = Y [Fulr)e™* +ccl, (9)
93,70 93,70
where
Fy = Eza/gfh Fy = Bza/gfz’ (gfa #0). (10)

The functions F, and their components F,, satisfy the same equations as F, and E,,, respectively.
The component. F, is a solution of the Poisson equation. On the other hand, if there is a component
E., or B,, with g2, — 0, Eq. (8) reduces to two dimensional Laplace equation.
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The functions ApF), satisfy

—ArFy Y GEa Y B, —OrF Y gaFe o ) Ba (11)
g5 70 9470 95270 92,#0

Here define Fyg, and By, as

Egz Ez { A'I'Pvl E Z Eza, BOz - Bz + A’I‘FI2 - z Bza, (12)
93,0 9520

which satisfy Arky, — 0 and ApBy, = 0. Then we have useful formulas for F, and B,:
E, - —ArFy + By, B, = —OrF + By, (13)
Using Eq. (13) and defining F, as F, - e, F,, we can rewrite Eq. (4) as
AT(E—VXVXFHVx@,Fg):—VxVxEo,Jera,Boz, (14)
Ar(B- LV XOF —VxVxFa) - ~VXOF -V xVxBy, (15
where Eo, e,Fp, and By, - e,By,. Define Eg and By as the quantities in the parentheses at

the left hand side in Eqgs. (14) and (15), respectively. The results of this section is summarized in
the following theorem.

Theorem 1: If the components E,, and B,, satisfy Eq. (7), the field can be decomposed into
three components as follows:

1
E VxVxF, -Vx3gF;,+Ey, B~ ZVX&F1+'VXVXF2+B0, (16)
where Eg and By satisfy

NrEy -V xVXEg + VxaBy, ArBg= —%V X 3 Eg, — V x V x Bg,. (17

Theorem | plays a central role in performing the field quantization in this paper. It is worth
emphasizing that each term in Eq. (16) is a solution to Maxwell’s equations.

3 Vector Mode Functions and Field Quantization

The cavity we treat here is enclosed by rectangular walls having sides Lz, Ly, and L, in the z, y,
and z directions, respectively: 0 < z < Ly, 0 <y < Ly, and 0 < 2z < L,. We assume that the
cavity has perfectly conducting walls. The tangential component of the electric field Elcan and the
normal component. of the magnetic field Byom must accordingly vanish at the boundaries of the
cavity.
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T'he above boundary condition reduces to that for the z components

E, 0, 0B, 0, (z-0, Ls), (18)
E, 0, 8B, 0, (y- 0, Ly, (19)
B. 0, 8,E,-0, (z=0, L) (20)

The solution to the Helmholts equation (6) for the components E., and B., under the above
boundary conditions is given by
E.(r,t) - Cy(t)sin(érz/L,)sin(mny/L,) cos(nmz/L.),
B.s(r,t) - Cua(t) cos(bnz/L,)cos(mnz/L.)sin(nwz/L.), (21)
where the mode index is s = (¢,m,n) ({,m,n = 0,+1,42,.-.).
From the solution (21) we have
92 = g2 = (€n/Lz)* + (mm/Ly)?,
K2, = k2 - (bn/Lz)? + (mm/Ly)? + (nw/L,)> (22)
Consequently, we can use Theorem 1 in the preceding section. Although it follows from Eq. (22)

that g2, > 0, we can prove that g2, > 0, which results from the following lemma. We omit its
proof.

Lemma: Ey, By 0 and g2, > 0. As a result, the term with £ = m = 0 in Eq. (21) cannot be
used.

Let us next obtain the functions F,, whose definitions are given in Eqgs. (9) and (10). That is,

the functions are given by
Y Ez,,(l', t) - h‘*’a
P,l(l‘, t) = 92 ’h‘, 260 [1 79} (t)lﬁ,l(r),

8

FaZ(r’ t) = Bz"g(:’ t) IV ;u:; 082(t)¢02(r)a (23)

8

where w,, = w, and we have introduced a,,(t) = a,,(0)e~*** and ¥,, given by
Ya(r,t) = co1sin(lrz/L,)sin(mny/ L) cos(nnz/L,), (24)
Ya2(r,t) = csa cos(€mz/L.) cos(mny/Ly)sin(nnz/L,), (25)

with c,1 = [8/(VK29?)|'/? and c,p = [8/(Vw?g?)]/2. The functions ¥,, has the orthonormality
property
. 1
[ dr v @pva(r) = glewlViu, (26)
where [ dr - [, drdydz and V is the cavity volume. Here the quantity cosz in Egs. (24) and

(25) must be changed to 1/v/2 when z = 0.
Substituting the functions F, in Eq. (23) into E in Eq. (16), we find

E(r,1) - iz\/g (300 (s () — a2 (B, ()], (27)
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where the vector mode functions u,, are given by
U, V xV x ez¢,,, Uy - iw,V X ez¢,2. (28)

The vector mode functions satisfy V-u,, 0, (A + k% )u,, 0, and at the boundaries Usoltan =
0,V X U|oorm 0. They also satisfy the orthonormality property needed for quantization:

/ drul, (r) - Uyer(r) = bss boor. (29)

To get the quantized field, the functlons @40 (t) are regarded as annihilation operators satisfying
the commutation relation [aw(t), a,,,,, (t)] = bss860:. Then we get the following theorem.

Theorem 2: The quantized field and the Hamiltonian are given by

E(r.t) - iz\/g [ar (010 () — al, ()il ()] (30)

B(r,t) - Z" h [aw(t)V X Uy (r) + al, ()V x u:,(r)], (31)
Z —huw, ( 2 0ss %a_,,,aw) Zhw ( aw+;) (32)

4 Spontaneous Emission

As an application, we consider the transition rates of an atom in the cavity, using the dipole
approximation. The Hamiltonian is given by H = Ha+ Hg+ Hy, where Hy is the free Hamiltonian
for the atom, Hy for the field which is given in Eq. (32), and H; = eD - E(R) (—eD: the total
electric dipole moment of the atom; R - (X, Y, Z): the position of the atom).

At t = 0, the atom is in an energy state |ip > (with energy E;,) and the field is in the vacuum.
Then the probability per second of finding the atom in a state (with energy E;) at sufficiently
large time ¢ is given by

sin(w, — wo)t
m(ws — wo)

2
w23 un(R): < wlDfi > ! (33)
0% 40

where hwg -+ Fi, — Ei.
Let us take the average of the coordinates Y and Z and take L, — oo. The transition rates

w, and w, vanish (w; indicates the rate where the dipole moment is along with the ¢ direction).
The rate w; is given by

wz/wo = Z(l m?/€5)7120(1 — m? /&), (34)

where & - wolsfem, & = 1/2, wo = €*| < ig|Dli > |2wd/(3nheoc?), 8(z) = 1 (z > 0), and

227



0(z) O (z <0), which is shown in FIG. I.
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FIG. 1. Transition rate w, for L, — 0o, where the dipole moment is along with
the z direction.
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Setting here wp - 10' Hz, we have L, — 4.7 x 1072 mm, so that the cavity is quite narrow.
Also, FIG. 1 shows that the transition is forbidden when &, < 1, i.e., Ly < 9.4 X 10~2 mm., where
the cavity is a thin tube in this case.

5 Conclusions

The quantization for the field in the cavity has been performed as follows: obtain the decom-
position formula (16) in the Cartesian coordinates; solve the Helmholts equations (6) for the
components F,, and B,, under the boundary conditions; determine the functions F,, substitute
them into the decomposition formula (16), and obtain the vector mode functions satisfying the
orthonormality property (29); then we arrive at the quantized field and Hamiltonian. In the whole
process of quantization, the decomposition formula in Theorem 1 plays an important role.
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